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Why Linearization?

As we discussed before, many optimization problems that economists
deal with can be characterized by a system of ODEs. However, it
could be very difficult to find the global solution to these ODEs.

What can we do?

First, we will focus on local properties of the solution; for instance,
around the steady states.
Second, we will approximate general problems like ẋ = f (x) with
something that we know how to solve, first order linear ODEs, by
linearizing the system.
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Some Preparation
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Taylor Expansion

Under proper conditions, the Taylor expansion for f (x1, . . . , xd) around
(a1, . . . , ad) is given by

T (x1, . . . , xd)

=
∞∑

n1=0

· · ·
∞∑

nd=0

(x1 − a1)n1 · · · (xd − ad)nd

n1! · · · nd !

(
∂n1+···+nd f

∂xn11 · · · ∂x
nd
d

)
(a1, . . . , ad).

The first order expansion would be

T (x1, . . . , xd) ≈ T (a) +
d∑

j=1

Tj(a)(xj − aj).

This is what we will use the most often when we do linearization.
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Interpreting ln(X )− ln(X )

When X is close to X , ln(X )− ln(X ) is approximately the percentage
deviation of X from X . To see this, consider the first order expansion of
ln(X ) around X using the first order Taylor expansion formula in the
previous page:

ln(X ) ≈ ln(X ) +
1

X
(X − X )

⇒ ln(X )− ln(X ) ≈ X

X
− 1
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Cookbook for Log-Linearization
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The Basic Machinery

Consider a function f (X ). Let x denote ln(X ).
A common log-linearization of f (X ) around X that will underlie many
common cases is

f (X ) = f (ex)

≈ f (ex) + f ′(ex)ex(x − x)

= f (X ) + f ′(X )X (x − x).

In the multivariate case, we have

f (X) ≈ f (X) +
d∑

j=1

∂f

∂xj
(X)X j(xj − x j).
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Example: Expanding X around X = 1

Implicitly, X can be seen as a function f (X ) = X . This view allows us to
directly apply the formula from the previous page

f (X ) =f (e ln(X ))

≈f (X ) + f ′(X )X (x − x)

=X + 1× X × /(ln(X )− ln(X ))

=1 + 1× 1× (ln(X )− ln(1))

=1 + ln(X ).

A variation of this that is often used:

Xt+1

Xt
=e lnXt+1−lnXt

≈1 + lnXt+1 − lnXt .
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Example: An Additive Function

Consider expanding

f (X ) = AX 2 + BX + C

around X .

f (X ) ≈AX 2
+ BX + C + (2AX + B)X (x − x)
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Example: A Multiplicative Function

Consider a Cobb-Douglas production function:

Y = KαLβ.

Assume that we expand around Y = K
α
L
β

.

For the LHS:

Y ≈ Y (1 + y − y).

For the RHS:

KαLβ ≈Kα
L
β

+ αK
α−1

L
β
K (k − k) + βK

α
L
β−1

L(l − l)

=K
α
L
β

(1 + α(k − k) + β(l − l)).

Combining the two, we have

y − y = α(k − k) + β(l − l).
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Example: A Multiplicative Function (Cont.)

Note that in this very simple example we could actually derive the same
equation by just taking logs and subtract the steady state values. But
when the equation is more complicated, that trick may not work.
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